
Written Exam for the M.Sc. in Economics, Winter
2018-19

Advanced Macroeconomics: Structural Vector Autoregressive Analysis

About the exam

The topic for this project examination is the Purchasing Power Parity theorem

stating that the foreign exchange rate adjusts to changes in relative prices in

two countries. Purchasing Power Parity (PPP) states that

S12 =
P1

P2

(1)

where S12 is the nominal exchange rate between countries 1 and 2, P1 is the

price level in country 1 and P2 is the price level in country 2. The real exchange

rate is defined as
P1

P2S12

(2)

implying that the expected real exchange rate is equal to unity. If we take the

log of the PPP relation in equation (1) and rearrange we obtain

lnP1 − lnP2 − lnS12 = 0. (3)

If PPP holds and prices and exchange rates are I(1)-processes, then the three

variables must be cointegrated with cointegration vector

[
1 −1 −1

]
(4)

To avoid that some data sets are more difficult to handle than others, the

data sets are artificial (simulated from a known data generating process), and

they behave, as close as possible, like actual data. The data is generated by

the following Vector Error Correction (VEC) model

∆yt = ν + αβ′yt−1 + Γ1∆yt−1 + ut

where

yt =





lnP1

lnP2

lnS12



 , α =





0.009

0.014

0.060



 , β =
[
1 −1 −1.5

]
, ν =





0.012

0.001

0





and ut ∼ N (0,Σ). The remaining parameters are calibrated such that the re-

sulting time series vector more or less behave as actual time series. There are

no structural breaks in the data. In addition, the time series vector is generated

such that the lag length obtained using any of the three information criteria

(Akaike, Schwarz and Hannan-Quinn) suggest 2 lags in the underlying Vector

Autoregressive (VAR) model and that the Johansen trace test correctly suggests

the presence of 1 cointegration vector in the model. A formal test whether the
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PPP relation is present in the cointegration space (under the assumption that

there is 1 cointegration vector in the system and that the lag length is equal to

2) can produce both a rejection and a non-rejection depending on the data set

used. The data covers the sample 1974M1-2017M12.

It is not possible to detect the true data generating process but it is required

that sound arguments are used when discussing the model specification and that

choices made are convincingly motivated.

The proposed solution below is based on the dataset 101.mat

The Vector Error Correction Model

Suppose that all three variables in the PPP relation are either I(1) or I(0) and

that the underlying data generating process is a 3-dimensional Vector Autore-

gressive (VAR) model,

yt = ν + A1yt−1 + . . .+ Apyt−p + ut (5)

where yt =
[
lnP1 lnP2 lnS12

]′
, p is the lag length, ν is a constant term and

ut is a 3-dimensional zero mean white noise process with covariance matrix Σu

such that ut ∼ (0,Σu). Then we can rewrite the VAR model as the following

Vector Error Correction (VEC) model

∆yt = ν +Πyt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + ut (6)

where

Π = −
(
I3 − A1 − . . .− Ap

)

and

Γi = −
(
Ai+1 + · · ·+Ap

)
for i = 1, . . . , p− 1.

The rank of Π is equal to the number of cointegration vectors r and can be

decomposed as a product of two 3× r matrices of full rank, Π = αβ′ where α is

the 3× r adjustment coefficients and β is the 3× r cointegration vectors.

1. The data is already in natural logarithms. Construct the real exchange rate

and plot the data including the relative price (lnP1 − lnP2) and perform

graphical analysis in order to assess the degree of integration of all five

variables (the nominal exchange rate, the two price levels, the relative

price and the real exchange rate).

Answer: The graphs below show the data and the real exchange rate.

According to the graphs, we clearly see that the price levels are rising over

time whereas there is no apparent trend in the nominal exchange rate, see

Figure 1. The real exchange rate may appear stationary around a constant

mean (this hypothesis will be tested below) thus suggesting that the data

may be consistent with PPP, see Figure 2. The mean of the real exchange

rate is not equal to zero as implied by PPP. This could reflect transaction

costs and other possible barriers.
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Figure 1: Nominal exchange rate, domestic price level and foreign price level,

1974M1-2017M12.
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Figure 2: The real exchange rate, 1974:M1-2017M12.
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2. Formulate a well-specified VEC model for yt similar to the VEC model

above. Explain your workflow and how you argue for your choice of the

number of autoregressive lags.

Answer: The first step in empirical VAR analysis is to determine the

lag length in the underlying VAR. A common approach is to compute

information criteria (Akaike, Schwarz and Hannan-Quinn) and choose the

lag length that minimizes these measures. The workflow should start with

a maximum lag length and then we compute these criteria for each lag

length p = 0, . . . , pmax using the same number of observations for each lag

length. The function pfind.m produces the following output assuming that

pmax = 12.

p SIC HQC AIC

0 7.7402 7.7252 7.7155

1 -7.9446 -8.0047 -8.0434

2 -8.2387 -8.3438 -8.4115

3 -8.1466 -8.2968 -8.3935

4 -8.0537 -8.2489 -8.3746

5 -7.9827 -8.223 -8.3777

6 -7.8802 -8.1654 -8.3492

7 -7.7906 -8.1209 -8.3337

8 -7.6997 -8.075 -8.3168

9 -7.6104 -8.0307 -8.3016

10 -7.5102 -7.9756 -8.2755

11 -7.4194 -7.9298 -8.2587

12 -7.318 -7.8735 -8.2314

The minimum values of all three criteria suggest that the lag length p = 2

in the underlying VAR.

Alternatives to using information criteria as outlined above is to use one

of the following approaches:

• Top-down sequential testing (general-to-specific): The VAR(p) model

is

yt = ν +A1yt−1 + A2yt−2 + . . .+ Apyt−p + ut

where ν = A0. Start with a maximum number of lags pmax testing a

sequence of null hypotheses: H0: Apmax
= 0 vs. H1: Apmax

6= 0, H0:

Apmax−1
= 0 vs. H1: Apmax−1

6= 0, ..., H0: A1 = 0 vs. H1: A1 6= 0. Process

terminates when there is a rejection. Use Wald or LR tests.

• Bottom-up sequential testing (specific-to-general): Reverse the proce-

dure above, start with pmin testing for autocorrelation in the residuals

(using for example a multivariate test). Add lags until there is no

significant autocorrelation.
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Answers using either of these two approaches should also be accepted and

receive full points if correctly implemented and explained.

3. Test for multivariate autocorrelation, heteroscedasticity and normality. Does

you model satisfy the underlying assumptions?

Answer: To verify that the model is well-specified, we next test for auto-

correlation and heteroscedasticity in the residuals and the null hypothesis

that the residuals are normally distributed. We should use multivariate

tests provided in the functions: portman.m, march.m and multnorm.m.

First we need to re-estimate the VAR(2) model using VARls.m. We allow

for a constant term but no linear trend. The argument used to exclude a

linear trend is that the VAR in levels can be re-written as a VAR in first

differences (and as a VEC model) by subtracting yt−1 from both sides of

the levels VAR leaving the constant term and the residuals unaffected.

Start with the multivariate test for autocorrelation. We need to specify

the horizon used when computing the test statistic. We start with horizon

equal to 3. The portman.m function gives us the following result:

Tested order: 3

Test statistic 17.61

p-value 0.039982

Adjusted test statistic 17.69

p-value 0.038949

degrees of freedom 9

Here we note that the null hypothesis is rejected at the 5 percent level.

It seems that there is significant autocorrelation in the residuals. There

are two ways to proceed. Either adding a lag to the underlying VAR or

check whether the problem with autocorrelation persists for other horizons.

We start by testing for autocorrelation assuming that p = 2 but allowing

the horizon = 3, . . . , 12. These tests suggests that we reject the null for

horizons 3 and 4 but cannot reject the null of no autocorrelation for longer

horizons. The p-values are also very large for these horizons. As an al-

ternative we consider adding one lag to the underlying VAR model. The

autocorrelation tests now suggest that the problem with autocorrelation is

more pronounced than for p = 2, the p-values are consistently smaller. We

therefore conclude that the choice suggested by the information criteria

is appropriate. A good answer provides a discussion along these lines and

present test results for different horizons and for different lag lengths.

Next, we test for multivariate ARCH using the march.m function. The

results suggest that we, for horizons = 3, . . . , 12 always reject the null hy-

pothesis that there are no ARCH effects in the residuals at the 5 percent

level. For horizon = 3 we obtain:
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Test Doornik-Hendry

test statistic: 106.3

p-value 0.0053287

degrees of freedom 72

Adding one lag to the underlying VAR model does not change this result.

To investigate this potential problem further we turn to univariate ARCH

tests, the Engle’s ARCH test. These tests suggest that there is no ARCH

effect in any of the three residuals, thus contradicting the multivariate tests,

irrespective of the horizon. It is very often the case that the multivariate

ARCH test tends to reject the null even when there is no ARCH effect

in the residuals is discussed in the curriculum. A good answer provides a

discussion and should end with Engle’s ARCH test for different horizons

showing that there is no ARCH effect in any of the residuals irrespective

of the horizon.

Finally, we test the null that the residuals are normally distributed using

the multnorm.m function. We obtain the following results:

Test Doornik-Hansen Lütkepohl

joint test statistic: 9.8051 9.2477

p-value 0.1331 0.16012

degrees of freedom 6 6

Skewness only 0.090103 0.13371

p-value 0.993 0.98751

kurtosis only 9.715 9.114

p-value 0.02115 0.027813

The joint test statistic suggests a non-rejection of the null that the residuals

are normally distributed. Individual tests suggests the presence of kurtosis

but no skewness at the 5 percent level.

Overall these test statistics suggest that the model with p = 2 is fairly

well-specified. Adding one lag does not solve any problems detected by the

multivariate autocorrelation and ARCH tests, on the contrary, the problems

are intensified. Furthermore, univariate ARCH tests strongly contradict the

multivariate test. A good answer provide a discussion and should end with

the conclusion that p = 2 seems reasonable.

Testing for cointegration

4. For your preferred model, proceed by testing for cointegration using the

MATLAB function jcitest. Explain your approach and how you proceed to
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find the number of cointegration vectors in the system, that is the rank r.

Do you use different sources of information when determining the rank? If

so, explain how you argue.

Answer: Assuming that p = 2 in the underlying VAR implies that there is

only 1 lag in the VEC model. Remember that the MATLAB function jcitest

requires the user to specify p−1 instead of p, a good answer must explicitly

mention the number of first difference lags used in the tests. Using the

jcitest function we obtain:

r h stat cValue pValue eigVal

0 1 143.0489 29.7976 0.0010 0.2295

1 0 5.8971 15.4948 0.7200 0.0100

2 0 0.5959 3.8415 0.5979 0.0011

Starting with the hypothesis that r = 0 we find that the null hypothesis

that r = 0 is rejected at the 1 percent level. Increasing the rank we find

that we cannot reject the null that r = 1. The data, therefore, suggest the

presence of 1 cointegration vector.

This result holds for any lag length. So if it was decided to increase the

number of lags in the underlying VAR above to handle the autocorrela-

tion and ARCH findings, the Johansen test still suggest the presence of 1

cointegration vector.

We can use the estimated eigenvalues as an alternative source of informa-

tion when determining the rank. As is clearly illustrated in the table above,

the eigenvalue falls substantially when increasing the rank. Our conclusion

that the rank is equal to 1 is clearly supported.

A good answer must include a description of the approach, the so called

Pantula principle, where we start by considering the null hypothesis that

the rank is 0 and then we test the null that the rank is 1 and so on. A

sensitivity analysis of the unimportance of the number of lags should also

be included. As mentioned above, the answer must explicitly state how

many lags there are in the VEC model estimation.

5. Discuss and argue for the preferred way to include deterministic compo-

nents in the model.

Answer: The Johansen test computed above rests on the assumption that

there is no linear trend in the cointegration vector. We can distinguish

between five different cases depending on assumptions about deterministic

components. In our case, it is evident that we need a constant term in the

VEC model. The question is whether we also should add a linear trend,

either a linear trend in the cointegration vector but no quadratic trend in

the data or a allowing for a quadratic trend in the data.
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We can test the null hypothesis that there is a linear trend in the coin-

tegration vector using the jcontest function in MATLAB. The MATLAB

code to be used is:

[h,pValue] = jcontest(y,1,'Bcon',[0 0 0 1]','model ','H*','lags',p-1);

Executing this command we find a test statistic of 1.8357 with a p-value

of 0.1755, thus indicating a non-rejection of the null hypothesis that the

linear trend can be excluded from the cointegration space.

A good answer should include a formal test of this null hypothesis and a

motivation based on the graph of the real exchange rate where it was clear

that there is no linear trend in the PPP relation, i.e., no linear trend in the

real exchange rate.

6. Impose your preferred rank and test hypotheses on the cointegration space

using the MATLAB function jcontest. Start with tests for exclusion, sta-

tionarity and weak exogeneity. Explain the meanings of these tests.

Answer: Stationarity: the null hypothesis that a specific variable is station-

ary. Weak exogeneity: the null hypothesis that a specific variable respond

to deviations from the long-run relationship (the cointegration vector). Ex-

clusion: the null hypothesis that a specific variable can be excluded from

the cointegration space.

We can test all these hypotheses using the MATLAB function jcontest.

The results suggest, overwhelmingly, that we can reject the null that the

variables are stationary, that any variable can be excluded from the coin-

tegration space and that the variables do not respond to deviations from

the cointegration vector. All these results must be shown in a table (or

printout from MATLAB).

7. Test the null hypothesis that PPP holds using the MATLAB function jcon-

test. Explain how this test relates to the exclusion and stationarity tests.

Answer: The MATLAB code to conduct this test is:

[h,pValue] = jcontest(y,1,'Bvec',[1 -1 -1]','lags',p-1);

Depending on data sets, we obtain different results here. In some cases we

strongly reject the null that PPP holds (for this data set we reject the null

at the 1 percent level) but for other data sets we cannot reject the null.

The p-values from these tests must be provided.

Stationarity test, exclusion tests and tests for specific cointegration vec-

tors are related. If one variable can be excluded from the cointegration

space, then we expect to reject cointegration vectors where this variable is

included. If a variable is stationary, then this variable forms a cointegration

vector where all other variables are excluded. The test results should be

consistent, but this may not always be the case in practice. In our empirical

application we found that we reject the null hypothesis that the variables
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are stationary and we also rejected the null that any variable can be ex-

cluded from the cointegration space. Then we tested for PPP and found

that this null can be rejected. This implies that we reject PPP but we have

not rejected the hypothesis that the three variables form a cointegration

vector. The estimated cointegration vector is
[
1 −1.05 −2.40

]′
under

the assumption that the rank is 1. This vector is significantly different

from the PPP relation.

8. Split the sample into two equal sized sub-samples and perform tests for

exclusion, stationarity, weak exogeneity and the null hypothesis that PPP

holds. Comment on the importance of the sample length for these tests.

Answer: Here we will find that the information criteria still suggest that

p = 2, Johansen test often are consistent, that is, suggest rank equal to 1,

but tests for stationarity, exclusion and weak exogeneity do change substan-

tially. For example, using our data we now find that nominal exchange rate

is stationary, the domestic price level does not adjust to deviations from

the cointegration vector and that the foreign price level and the nominal

exchange rate can be excluded from the cointegration space using the first

part of the sample. For the second part of the sample we find that we al-

ways reject stationarity, always reject weak exogeneity but reject exclusion

only for one variable.

We know that the Johansen test and tests on the cointegration vectors in

particular are biased in small samples. For our sample sizes (and of course

the simulated data) we only find that tests on the cointegration vector

change when reducing the number of observations.

9. Impose r = 1 and the theoretical cointegration vector (the assumption that

PPP holds) and re-estimate the VEC model using the full sample and using

your preferred lag length found above. Comment on the driving forces of

the data in this model.

Answer: We can estimate the VEC model with known cointegration vector

using either LS or ML. In our model we have rank equal to 1 and 3 variables.

This implies that there are 2 common trends driving the 3 variables. These

two common trends determine the long-run behavior of the three time

series, that is, they have long-run effects on all variables. But, given our

assumption that PPP holds, the long-run effects on the real exchange rate

must be equal to zero. Since we have one cointegration vector, we have 1

transitory shock affecting the variables only in the short-run.

A good answer includes both estimates of the VEC model and a short

discussion about the driving forces as above.
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Identification of structural model

10. What are the main differences between short- and long-run restrictions.

What are the main assumptions underlying these two alternatives to identify

structural VAR models? You are not required to discuss over-identification

or non-recursive identification.

Answer: The main difference between short- and long-run restrictions is

that the former imposes restrictions on the contemporaneous effects of

the shocks (the first period effect) whereas the latter imposes restrictions

on the long-term effects of the shock. These restrictions can take on

many different forms, they could be exclusion restrictions, proportionality

restrictions or equality restrictions.

Short-run restrictions: A common approach to implement these restrictions

is to use a Cholesky decomposition of the variance-covariance matrix of

the residuals. Consider the VAR(p) model

yt = ν +A1yt−1 + A2yt−2 + . . .+ Apyt−p + ut

where ν = A0 and E[utu
′
t] = Σu. This is the reduced form VAR(p) model.

A structural form VAR(p) model can be written as

B0yt = B1yt−1 + . . .+ Bpyt−p + wt

or as

yt = B−1
0 B1

︸ ︷︷ ︸
A1

yt−1 + . . .+ B−1
0 Bp

︸ ︷︷ ︸
Ap

yt−p +B−1
0 wt

︸ ︷︷ ︸
ut

where E(utu
′
t) ≡ Σu = B−1

0 (B−1
0 )′ and E(wtw

′
t) = IK . We can estimate the re-

duced form VAR to obtain estimates of A1, . . . , Ap and Σu but identification

requires a mapping from these estimates to the parameters B0, B1, . . . , Bp.

A simple and popular approach is to use a Cholesky decomposition (or

orthogonalization) to identify the parameters in the structural VAR model.

Define a lower-triangular K ×K matrix P with positive diagonal such that

Σu = PP ′. Since Σu = B−1
0 (B−1

0 )′ we then find that B−1
0 = P .

The reduced form VMA model is

yt = δ +Φ(L)uy

where Φ(L) = A(L)−1 and L is a lag operator. The structural form VMA

model is

yt = δ + Φ(L)uy = δ + Φ(L)B−1
0 (B−1

0 )′ut = δ +Θ(L)wt

Note: The Cholesky decomposition allows us to just identify the structural

parameters, we need K(K − 1)/2 restrictions to just identify the structural

model and the Cholesky decomposition provides us with those restrictions
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since P is lower (or upper) triangular. Moreover, the structural model is

recursive, i.e., we impose a causal chain implying that the ordering of the

K variables matter. We obtain different P matrices for different ordering

of the variables.

Long-run restrictions: If at least one of the variables included in the VAR

model contains a unit root we can impose restrictions on the long-run ef-

fect of a structural shock. In particular, this approach allows us to impose

economic restrictions that are not controversial (in contrast to short-run re-

strictions are), for example that nominal shocks are neutral in the long-run

(the classical nominal-real dichotomy). One example is the Blanchard-

Quah identification within a bivariate VAR model with output and unem-

ployment where it is assumed that there are two shocks, a demand and a

supply shock where output is neutral with respect to the demand shock

in the long-run. This identification approach can be extended to allow

for additional shocks. Unit roots and cointegration relationships allow us

to consider the identification of permanent shocks (shocks having long-run

effects on at least one variable in the system) and the identification of tran-

sitory shocks (shocks having only short-run effects) on the system. In the

Blanchard-Quah identification we assume that output is a unit root process

whereas unemployment is stationary (and thus constitute a cointegration

vector). The advantage of using this approach is that there is a closer rela-

tionship between economic models and empirical analysis where restrictions

(including possible cointegration vectors) can aid the identification.

To illustrate this approach, consider the following VEC model

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut

where α is the adjustment coefficients and β is the cointegration vector.

The VEC model can be rewritten as a Common Trends model

yt = Ξ
t∑

i=1

ut +Ξ∗(L)ut + y∗0

where

Ξ = β⊥



α′
⊥



IK −

p−1∑

i=1

Γi



β⊥





−1

α′
⊥

where α⊥ and β⊥ are orthogonal complements to α and β respectively. The

structural Common Trends model can be written as

yt = Ξ
t∑

i=1

B−1
0 wi +Ξ∗(L)B−1

0 wt + y∗0

yt = ΞB−1
0

︸ ︷︷ ︸
Υ

t∑

i=1

wi + Ξ∗(L)B−1
0 wt + y∗0 = Υ

t∑

i=1

wi +Ξ∗(L)B−1
0 wt + y∗0
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where Υ is the matrix of long-run multipliers, it measures the long-run

effect of the common trends (or the permanent shocks). Note that the

long-run effects of the stationary part Ξ∗(L)B−1
0 wt goes to zero as j → ∞.

The rank of Υ is the same as the rank of Ξ, i.e., rank K − r. Long-run

restrictions can be imposed directly on Υ, if the long-run effect of a shock

is zero on all variables, then the corresponding column of Υ is restricted to

zero.

To identify the transitory shocks we impose restrictions on B−1
0 , in partic-

ular, we impose restrictions on the last r columns of this matrix.

11. Write down the reduced form and structural form Common Trends model

consistent with the VEC model. Show how these two representations are

related. Provide an interpretation of the three structural shocks in the

structural model. If you cannot provide names for these shocks, try to

explain how they affect the data and the real exchange rate under the

maintained assumptions.

Answer: The reduced and structural forms are provided above. We start

with the permanent shocks. In a standard AD-AS model we know that

demand shocks have short-run effects on inflation, inflation should either

increase or decrease temporarily. During this process, the price level must

adjust to either a higher or a lower level. In our trivariate system with

domestic and foreign price levels we may assume that the two permanent

shocks are associated with domestic and foreign demand shocks, they have

permanent effects on the price level within their own economy but inflation

is unaffected in the long-run. If we also assume a small open economy, we

may add the assumption that demand shocks in the small open economy

should not affect prices in the long-run. This assumption can be used

to separate the two permanent shocks, i.e., to identify these two shocks.

Since PPP holds, these two shocks only have short-run effects on the real

exchange rate.

The transitory shock could be viewed as an exchange rate shock leading

to transitory fluctuations in the nominal exchange rate. It is implicit in the

PPP model that any change in the relative price level leads to adjustments

in the nominal exchange rate, not the other way around.

A good answer must include a discussion of possible shocks affecting the

VAR/VEC system. The arguments above may not be the only available

option, but it is essential that the answer includes a motivation and main

arguments based on economic model or intuition.

12. What is the consequence for the long-run multiplier if we assume that PPP

holds?

Answer: The long-run multiplier Υ is a 3×3 matrix where the third column

is zero since the long-run effects of the transitory shock on all variables is

zero. However, the condition that β′Υ = 0 is required for the identification
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of the permanent shocks. The assumption that PPP holds therefore implies

that the long-run effect on the real exchange rate is equal to zero.

13. Use the estimated reduced form VEC model together with identifying re-

strictions (a combination of short- and long-run restrictions) to identify the

three structural shocks. Show how these shocks can be identified including

the number of long-run and short-run restrictions needed to just identify

the structural shocks. Consider only null restrictions.

Answer: The small open economy restriction mentioned above implies

that the first element in the second row of Υ is zero. This assumption

is enough to identify the two permanent shocks. The transitory shock

is identified since the cointegration vector is orthogonal to the common

trends.

14. Outline how the MATLAB solver can be used to impose these restrictions.

Answer: The following code implements the restriction:

% restrictions.M

% Normalization: SIGMA_w=I

function q=restrictions(B0inv)

global GAMMA SIGMA alpha beta alpha_perp beta_perp Xi p

K=size(B0inv,1);

THETA1=Xi*B0inv;

F=vec(B0inv*B0inv’-SIGMA(1:K,1:K));

% Long run and short run restrictions

q=[F; THETA1(2,1); THETA1(1,3); THETA1(2,3); THETA1(3,3)];

q’+1;

Impulse responses and forecast error variances

15. Use the MATLAB solver to identify the structural model. Check that the

solver provides a valid identification and compute the variance-covariance

matrix of the identified structural shocks. Please, provide the MATLAB

code you are using to identify the shocks in the appendix. It must include

a description of the null restrictions you impose.

If you fail computing the B−1
0 matrix above, please use the restrictions.p file.

This file works as a standard m-file but the coding is concealed and there

is no way to convert the p-file into an m-file. Note that the restrictions.p

file is set up to use the MATLAB solver to compute the B−1
0 matrix using

a generic identification based on estimates from the VEC model. You can

use the standard coding to initiate the solver. To do this, you need to

include the following code into your MATLAB m-file. Note: Make sure

that you don’t have any restrictions.m files in the same folder and that
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the function vec.m is in the same folder. The same file can be used in a

bootstrap.

% Set global variables

global SIGMA GAMMA alpha beta alpha_perp beta_perp Xi p;

% Set options for fsolve

warning off

options=optimset('TolX',1e-10,'TolFun',1e-10,'MaxFunEvals',1e+10,'MaxIter',2000);

% Compute B0inv

B0inv=fsolve('restrictions',randn(K,K),options);

Answer: The code given above can be used to estimate the structural

model. Note that the restrictions.p file implements another identification

scheme, it may not be possible to provide an interpretation of the two

permanent shocks. However, using this generic identification allows the

user to estimate a structural model. In either case, it is necessary to

show that the solver has found a proper solution. Apart from providing an

estimate of the B−1
0 matrix, it is necessary to show the following matrices:

B−1
0 (B−1

0 )′ − Σu which should be equal to zero; Υ which should include the

zero restriction imposed on one element in the first two columns; B0ΣuB
′
0

which is the variance-covariance matrix of the structural shocks wt which

should be an identity matrix.

A good answer implements the proposed identification stated in question

11 correctly and should also provide statistics verifying that the solution is

valid using the statistics mentioned in the previous paragraph.

16. Estimate the structural VAR model and compute impulse response func-

tions (with bootstrap confidence bands using the delta method, i.e., the

standard residual based recursive design bootstrap with intervals based on

bootstrap standard errors) and variance decompositions (with bootstrap

standard errors using Efron’s percentile intervals). In addition, compute

the implied impulse responses of the real exchange rate to all shocks and

the corresponding forecast error variance decomposition. You can show

forecast error variance decompositions in either a table or in a graph. In-

terpret your results.

Answer: See graphs below. As is evident from the IRFs, we have imposed

the restriction that the long-run effect from domestic demand shocks (do-

mestic price shock) on the foreign price level is zero. A good answer

includes both the graphs of the IRFs and the FEVDs and a discussion of

the results. Answers excluding the effects of the three shocks on the real

exchange rate are enough. A very good answer includes these graphs. To

compute the FEVDs requires some additional coding in MATLAB, there

is no preprogrammed function to do this. However, it is straightforward

to rewrite the function FEVD.m to compute the variance decompositions

based on IRFs of the real exchange rate. To compute the IRFs of the real

exchange rate we simply multiply the responses of the three variables to,
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Figure 3: Effects of a domestic demand shock. 95 percent confidence bands

are computed using the delta method with 500 replications.
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say, the first shock with the PPP relation. The delta method produces

symmetric confidence bands around the point estimates whereas Efron’r

percentile approach is asymmetric taking into account that the variance

decomposition cannot be negative or exceed 1 (or 100%). Confidence

bands violating this latter condition must be incorrect.

A very good answer should also include a statement about whether or not

the signs of the columns of the B−1
0 matrix is handled. It is necessary to

check that the signs of the columns are consistent for each replication. In

practice this may not be a problem in the present setting, but should be

mentioned. Furthermore, a statement about the convergence of the solver

in each replication should be added.

17. Show a plot of the accumulated permanent shock(s) and the three vari-

ables. Discuss the results. Then plot the real exchange rate together with

the accumulated permanent shock(s). Is it possible to draw conclusions

regarding the driving forces of the variables?

Answer: There are different ways to compute the common trends in the

estimated model. One idea is to simply compute the accumulated sum of

the two permanent shocks, another idea is to multiply the accumulated

permanent shocks by the Ξ matrix defined above. Either way, we need to

remove the deterministic components of the data (the two prices). As an

illustration we compute the two common trends using the latter approach

and plot these two components together with the data where we have

removed a linear trend from the two price levels and the real exchange rate.
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Figure 4: Effects of a foreign demand shock. 95 percent confidence bands are

computed using the delta method with 500 replications.
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Figure 5: Effects of all three shocks on the real exchange rate. 95 percent

confidence bands are computed using the delta method with 500 replications.
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Figure 6: Forecast error variance decomposition, domestic demand shock. 95

percent confidence bands are computed using Efron’s percentile method with

500 replications.
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Figure 7: Forecast error variance decomposition, foreign demand shock. 95

percent confidence bands are computed using Efron’s percentile method with

500 replications.
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Figure 8: Forecast error variance decomposition, real exchange rate. 95 percent

confidence bands are computed using the delta method with 500 replications.
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The two common trends seem to be related to the two price levels (the

detrended price levels), the correlation is negative so that an increase in the

common trend is associated with a fall in the price level. The real exchange

rate is only associated with fluctuations in the common trends during the

latter part of the sample. Together, this suggests that our identification of

the two permanent shocks and their hypothesized relationship to the price

levels cannot be rejected.

Figure 9: Estimated common trends and the data.
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Extensions

18. Re-estimate the VEC model using the estimated cointegration vector in-

stead of the theoretical one. Use the same number of lags as above and

compute impulse response functions (with bootstrap confidence bands us-

ing the delta method). Compare these to the impulse response functions

you obtained when imposing the PPP condition. How sensitive are impulse

responses to deviations from PPP? Compute the impulse responses of the

real exchange rate. Interpret and compare to the case when PPP holds.

As above, in case you have not managed to use the solver, you can use

the p-file restrictions.p to perform these computations.

Answer: The only difference is that the long-run effects on the real ex-

change rate are non-zero. Otherwise the impulse response functions should

look the same. A good answer includes a discussion of this fact and an

explanation, the explanation being that PPP does not hold and therefore

the impulse responses of the real exchange rate do not converge to zero.

19. An alternative to using the MATLAB solver to compute the B−1
0 matrix is

to use the approach suggested by Warne (1993). Outline this approach

and show that the Warne approach yields a B−1
0 matrix identical to the one

found by the solver. You can either work with the theoretical cointegration

vector assuming that PPP holds or the estimated cointegration vector.

Please, provide the code you are using in the appendix.

Answer: It is enough here to show that the B−1
0 matrix obtained using

the Warne approach is equal to the solution obtained using the MATLAB

solver. The answer must include the code used to compute the closed form

solution.

Following Warne we first define the matrix Υ0 to identify the the two

permanent shocks and then we define the U matrix. First of all we need

to re-order the time series vector. We put the foreign price level first and

then follows the domestic price level and the nominal exchange rate. The

reason for this is that it will be simple to find an Υ0 matrix leading us to

the Υ matrix where we have imposed one zero restriction, the restriction

that the domestic demand shock cannot affect the foreign price level in

the long-run. The cointegration vector, under the assumption that PPP

holds, will then be
[
−1 1 −1

]
. From Warne we know that β′Υ0 = 0 and

that Υ = Υ0π where π is a lower triangular matrix. Let

Υ0 =





1 0

0 1

−1 1



 .
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It is easily seen that β′Υ0 = 0. The matrix Υ is then given by





1 0

0 1

−1 1





[
π11 0

π21 π22

]

=





π11 0

π21 π22

−π11 + π21 π22





where we see that the identifying restriction that the domestic price shock

has no long-run effect on the foreign price level (remember that we have

reordered the shocks).

Since we have only 1 transitory shock, U =
[
0 0 1

]
.

It is now straightforward to code this. For this ordering of the variables

we can verify that the B−1
0 matrix found using the Warne method is equal

to the one found by the solver. It could be that we need to switch signs

on one or two columns of the solver solution, but the absolute values are

identical. The code used could look like (the code is adapted from the

KLversusWarne.m file). The answer must include the MATLAB code and

the definition of the matrices above.

% Warne identification

beta=[-1 1 -1]’;

Upsilon0 = [1 0 -1;0 1 1]’;

MHLP=inv(Upsilon0’*Upsilon0)*Upsilon0’*Xi;

pipit=MHLP*SIGMA*MHLP’;

pimat=chol(pipit)’;

Upsilon=Upsilon0*pimat;

Fk=inv(Upsilon’*Upsilon)*Upsilon’*Xi;

display(Fk,’Fk matrix’);

Umat=zeros(1,3);

i=1;

while i<=r;

Umat(i,K-i+1)=1;

i=i+1;

end;

% Check that identification of transitory shocks is valid

if det(Umat*alpha)==0

display(’Identification of transitory shock is invalid’);

else

display(’Identification of transitory shocks is valid’);

end

xi=alpha*inv(Umat*alpha);

i=1;

while i<=K;

j=1;

while j<=r;

if abs(xi(i,j))<=1E-12;

xi(i,j)=0;
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else

end

j=j+1;

end

i=i+1;

end

qr=chol(xi’*inv(SIGMA)*xi)’;

Fr=inv(qr)*xi’*inv(SIGMA);

display(Fr,’Fr matrix’);

invB0 = inv([Fk;Fr]);

invB0 = [-invB0(:,1) invB0(:,2:3)];

display(invB0,’B0-̂1 matrix’);

display(-Xi*invB0,’(3) C(1)*B0-̂1 should be Upsilon zeros(K,r)’);

display(inv(invB0)*SIGMA*inv(invB0)’,’(4) Covariance matrix of structural

shocks w_t should be I_K’);

display(inv(qr)*xi’*inv(SIGMA)*xi*inv(qr’),’Should be diagonal’);
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